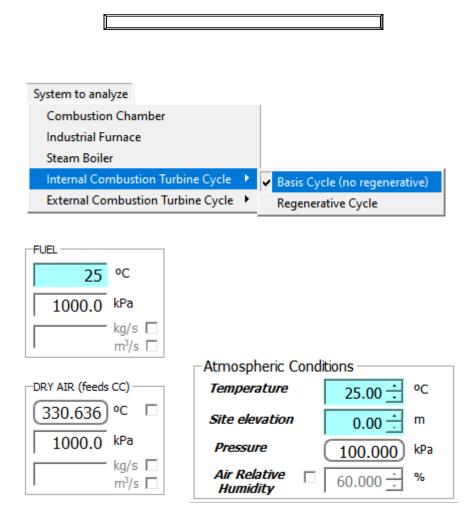
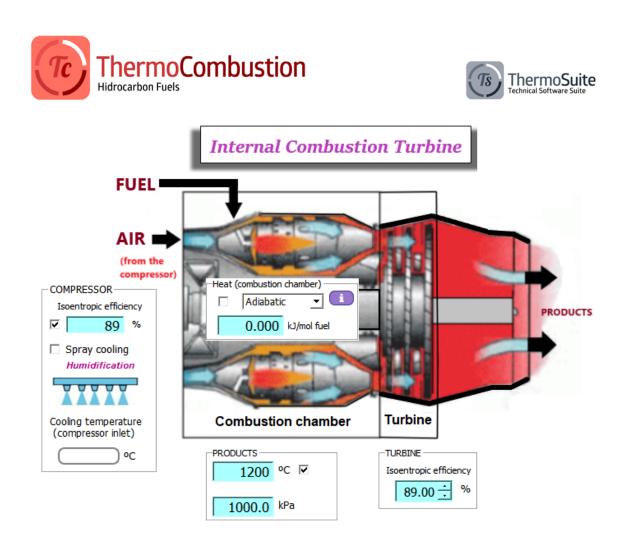


Exercise 3 (Brayton cycle)

A mixture of hydrocarbons is used as fuel in a Brayton cycle. Air enters with 190% excess. The environmental conditions are 25°C and 100 kPa and it is mixed with the fuel that enters the same conditions, before combustion. The temperature reached by the combustion gases is 1200°C and the combustion chamber works at 1000 kPa, without pressure drop. The isentropic efficiencies of both turbomachines are 89%. The pressure in the exhaust is 100kPa.

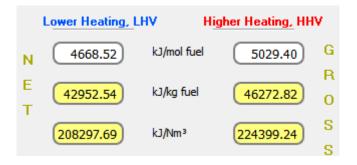

C ₈ H ₁₈	84 %
C ₅ H ₈ O	10 %
C ₄ H ₈ O	6 %


Get:

a) Energy analysis with Sankey diagram

b) Exergy analysis with Grassmann diagram

Study the effect of evaporative cooling of the air before entering the compressor.

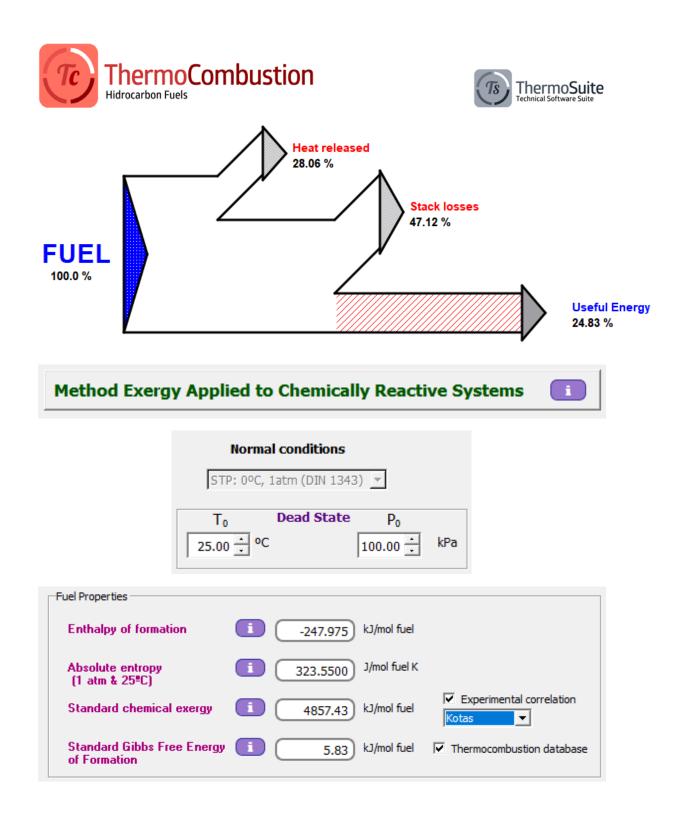

The Brayton cycle analysis is used to predict the thermodynamic performance of gas turbine engines. The Brayton Cycle is a thermodynamic cycle that describes how gas turbines operate. The idea behind the Brayton Cycle is to extract energy from flowing air and fuel to generate usable work which can be used to power many vehicles by giving them thrust. The THERMOCombustion computer program, uses the Brayton cycle to determine the thermodynamic variables, including energy and exergy analysis of an engine design for specified values of component performance.

Liquid Liquid Liquid	Pvapor(T* fuel) kPa 76.854 1.33282 12.637 Total	Inerts: Molar ratio % 84.0000 ÷ 10.0000 ÷ 6.0000 ÷ 100.0000 ÷) %	FUEL Isooctane Cyclopentanone 2-butanone	
Normal conditions STP: 0°C, 1atm (DIN 1343) \checkmark T_0 Dead State P_0 25.00 \div °C 100.00 \div kPa					

FLUE G	AS (Combus	tion Products)	On wet basis	On dry basis
	mol/mol fuel	🗌 kg/kg fuel	Mole %	Mass %
CO ₂	7.460000	3.020633	6.9044	10.5727
CO				
H ₂ O	8.200000	1.359143	7.5893	4.7572
N ₂	82.054663	21.148539	75.9438	74.0231
O ₂	10.331972	3.041886	9.5625	10.6471
SO ₂				
H ₂				
Ar				
<mark>unburned</mark>				
TOTAL	108.0466	28.5702	100.00 %	100.00 %

20 C		1
Model Substances (oxidizer and combustion products)	×	Actual Gas
Combustion Products	×	✓ Ideal gas
Reactants	×	Perfect gas
Streams of AIR/FUEL	•	

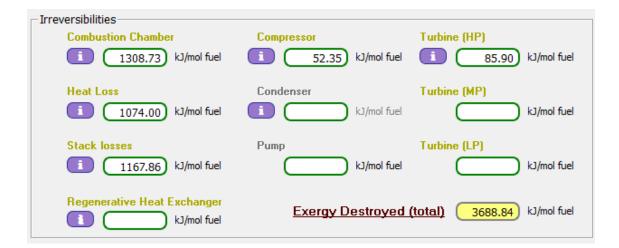
Products Temperature	
	(1200.00) °C
Adiabatic Flame	<u>Temperature</u>
For λ = 1.9000 (Actual)	1515.50 °C
For λ = 1.0 (max) (Theoretical)	2121.35 °C (25°C, 1atm)

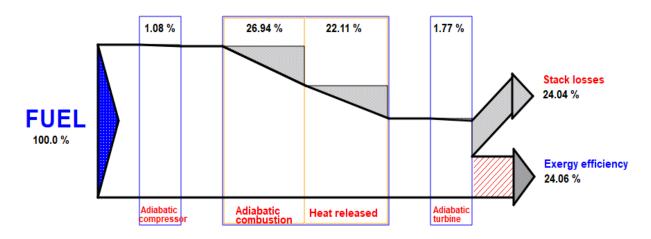


Results of the Energy Analysis

ADIABATIC TURBINE	
STAGE, HP	APPA
Enthalpy at the entrance 4301.66 kJ/mol fuel	
Specific work 2096.55 kJ/mol fuel	
Stack discharge 2205.11 kJ/mol fuel	
Stack losses temperature 659.87 °C	
Isoentropic efficiency ? %	
Isoentropic stack losses 589.99 °C	

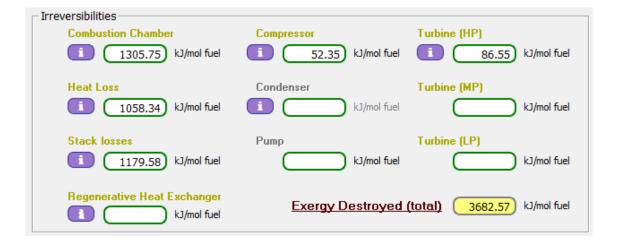
ADIABATIC COMPRESSOR	AND THE MAN
Specific work 937.53 kJ/mol fuel	ANT
Isoentropic efficiency ? 89.000 %	VIII

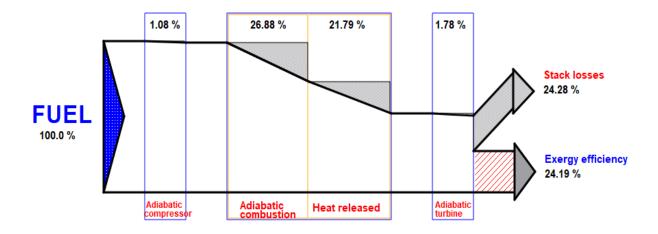

Thermal efficiency (Plant)
24.83 %
Net work
(1159.02) kJ/mol fuel


Fuel chemical exergy	Exergy efficiency
bfuel 4857.43 kJ/mol fuel i bfuel/LHV 1.0400 i About	Steam generator ? % i Useful exergy kJ/mol fuel Compressor ? 94.42 % i
Chemical exergy (flue gas)	Turbine HP Turbine LP ? 96.06 % ? i Turbine MP %

- Sustainability index (SI	[)		
1.32	SI=1/Dp Dp= total exergy destruction /exergy input	Reducing the environmental impact can be achieved by minimizing the irreversible exergy losses of the system.	
Exergetic performance coefficient			
(total exergy destruction/net work)			

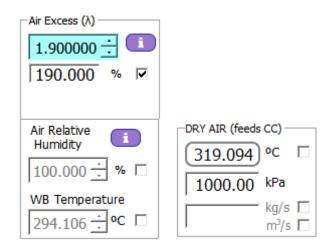
Settings		
Final Report Definition		
Water gas shift reaction (mass balance)	•	
Chemical dissociation hypothesis		
Model Substances (oxidizer and combustion products)	•	✓ Actual Gas
Combustion Products	•	ldeal gas
Reactants	•	Perfect gas
Nedectaries		Perfect gas


ADIABATIC TURBINE	
STAGE, HP	
Enthalpy at the entrance 4320.30 kJ/mol fuel	
Specific work 2110.69 kJ/mol fuel	
Stack discharge 2209.61 kJ/mol fuel	Thermal efficiency (Plant)
Stack losses temperature 660.17 °C	<u>25.12</u> % i
Isoentropic efficiency ? %	_Net work
Isoentropic stack losses 589.99 °C	1173.16 kJ/mol fuel



- ADIABATIC TURBINE

STAGE, HP	
	Exergy efficiency
Enthalpy at the entrance 4320.30 kJ/mol fuel	Steam generator
Specific work (2110.69) kJ/mol fuel	?% 1
2110.05	Useful exergy kJ/mol fuel
Stack discharge 2209.61 kJ/mol fuel	Compressor
Stack losses temperature 660.27 °C	? <u>94.42</u> % i
	Turbine HP Turbine LP
Isoentropic efficiency ? %	? 96.39 % ? 1
Isoentropic stack losses 589,99 oC	Turbine MP
temperature 589.99 °C	%

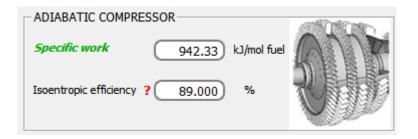


Study of the effect of evaporative cooling of the air before entering the compressor.

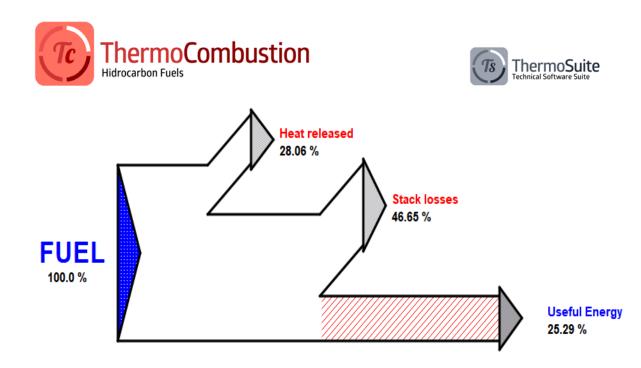
COMPRESSOR	
Isoentropic efficiency	
☑ 89.00 %	
Spray cooling	
Humidification	Atmospheric Conditions
00000	Temperature 25.00 °C
Cooling temperature	Site elevation 0.00 — m
(compressor inlet)	Pressure 100.00 kPa
19.38 °C	Air Relative Humidity 60.000 ÷ %

FLUE G	AS (Combust	ion Products)	✓ On wet basis	On dry basis
	mol/mol fuel	🗌 kg/kg fuel	Mole %	Mass %
CO ₂	7.460000	3.020633	6.8288	10.5563
CO				
H ₂ O	10.591845	1.755589	9.6957	6.1353
N ₂	82.054663	21.148539	75.1123	73.9085
O ₂	9.136049	2.689789	8.3631	9.4001
SO ₂				
H ₂				
Ar				
unburned				
TOTAL	109.2426	28.6145	100.00 %	100.00 %

20 C		
Model Substances (oxidizer and combustion products)	×	Actual Gas
Combustion Products	۲	✓ Ideal gas
Reactants	۲	Perfect gas
Streams of AIR/FUEL	•	


Products Temperature	
	(1200.00) °C
Adiabatic Flame	Temperature
For λ = 1.9000 (Actual)	1492.10 °C
For λ = 1.0 (max) (Theoretical)	2121.35 °C (25°C, 1atm)

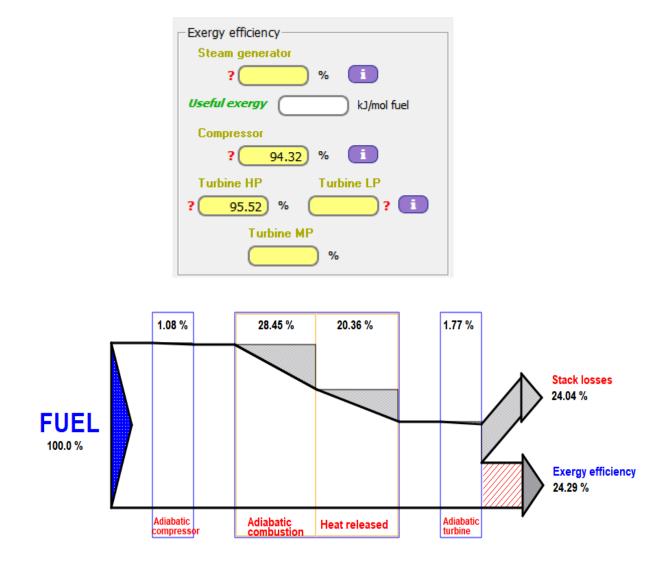
Results of the Energy Analysis	i



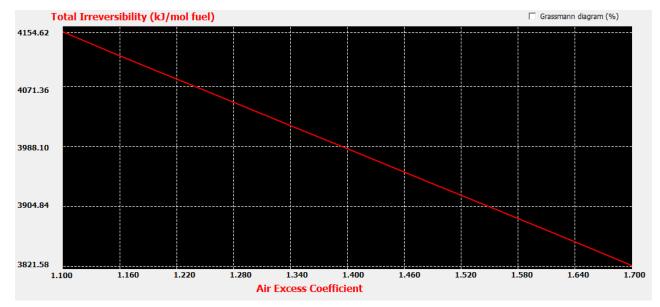
ADIABATIC TURBINE		
	STAGE, HP	APPA
Enthalpy at the entrance	4366.28 kJ/mol fuel	
Specific work	2123.02 kJ/mol fuel	
Stack discharge	2243.26 kJ/mol fuel	
Stack losses temperature	661.57 °C	
Isoentropic efficiency	? %	
Isoentropic stack losses temperature	591.99 °C	

Thermal efficiency (Plant)
25.29 %
L]
Net work
(1180.69) kJ/mol fuel

Method Exergy Applied to Chemically Reactive Systems

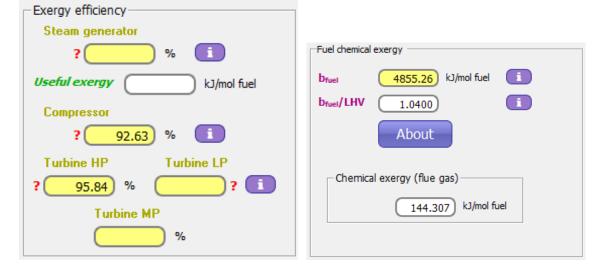

Fuel chemical exergy			
4951.77 kJ/mol fuel			
1.0607 i			
About			
xergy (flue gas)			
144.307 kJ/mol fuel			

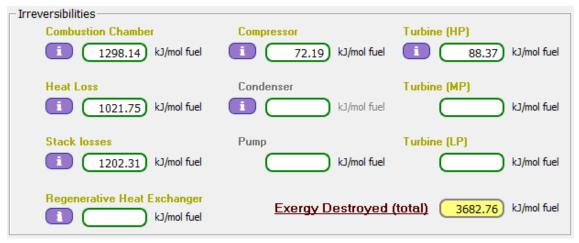
_ Irreversibilities		
Combustion Chamber	Compressor	Turbine (HP)
1408.62 kJ/mol fuel	53.53 kJ/mol fuel	i 87.72 kJ/mol fuel
Heat Loss	Condenser	Turbine (MP)
1008.25 kJ/mol fuel	kJ/mol fuel	kJ/mol fuel
Stack losses	Pump	Turbine (LP)
1190.63 kJ/mol fuel	kJ/mol fuel	kJ/mol fuel
Regenerative Heat Exchanger kJ/mol fuel	Exergy Destroyed	(total) 3748.75 kJ/mol fuel


Sustainability index (S	I) SI=1/Dp Dp= total exergy destruction /exergy input	Reducing the environmental impact can be achieved by minimizing the irreversible exergy losses of the system.
Exergetic performance	e coefficient	
3.18	(total exergy destruction/net wo	ork)

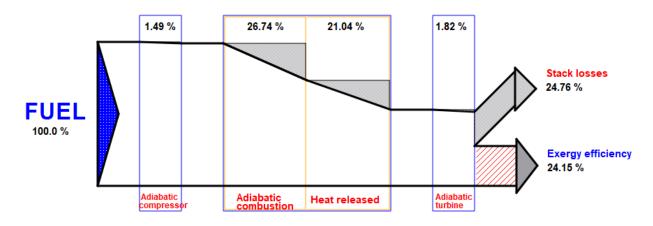
The analysis of entropy generation and exergy loss is used for optimizing the performance of energy conversion systems such as gas turbines. Exergy loss in the combustor of 30%–50% is the largest of all component losses in the gas turbine systems. The sources of the large exergy loss during the combustion process can be evaluated by analyzing local entropy generation of irreversible processes.

	Settings			
	Final Report Definition			
	Water gas shift reaction (mass balance)	×		
	Chemical dissociation hypothesis			
	Model Substances (oxidizer and combustion products)	×	~	Actual Gas
	Combustion Products	×		ldeal gas
-	Reactants	×		Perfect gas
	Streams of AIR/FUEL	•	Г	


Products Temperature		
	(1200.00) °C	
Adiabatic Flame Temperature		
For λ = 1.9000 (Actual)	(1500.30) °C	
For λ = 1.0 (max) (Theoretical)	2121.35 °C (25°C, 1atm)	



- ADIABATIC TURBINE


STAGE, HP		
	Enthalpy at the entrance 4385.09 kJ/mol fuel	
	Specific work 2136.94 kJ/mol fuel	
	Stack discharge 2248.16 kJ/mol fuel	Thermal efficiency (Plant)
	Stack losses temperature 662.17 °C	
	Isoentropic efficiency ? %	Net work
	Isoentropic stack losses 592.09 °C	1157.17 kJ/mol fuel

